θ→RAD | Cplx→Rect | ||||
|
|||||
0 | |||||
Do rozwiązywania wszelkiego rodzaju problemów matematycznych oddajemy do Państwa dyspozycji doskonałe narzędzie, nasz kalkulator naukowy online.
Jest to bardzo prosty w obsłudze kalkulator, za pomocą którego można wykonywać różnorodne obliczenia matematyczne. Praktyczne i funkcjonalne narzędzie pomagające zarówno profesjonalistom, jak i studentom.
Najważniejsze cechy kalkulatora to:
– Możesz wykonywać obliczenia przy użyciu liczb zespolonych zarówno w postaci prostokątnej, jak i biegunowej.
-Posiada 6 miejsc w pamięci.
-Przestrzenie pamięci mogą być używane jako zmienne w celu ułatwienia obliczeń złożonych operacji.
-Pełne wyrażenia mogą być przechowywane w przestrzeniach pamięci.
-Przechowywanych jest 20 ostatnich operacji.
Itp.
W poniższej tabeli masz do swojej dyspozycji wszystkie symbole, operandy i funkcje wraz z ich znaczeniem, które pomogą Ci w korzystaniu z kalkulatora naukowego.
Możesz korzystać z wirtualnej klawiatury naszego narzędzia, ale możesz z niej również doskonale korzystać z klawiaturą swojego urządzenia.
Symbol | Pisać | Opis |
+ | Operator dodawania | |
- | Operator odejmowania | |
* | Operator mnożenia | |
/ | Operator dzielenia i ułamki | |
^ | Znajdź moc za pomocą dowolnego wykładnika. | |
! | Silnia liczby | |
e^ | Zwraca „e” podniesione do potęgi argumentu liczbowego. | |
____ | Znajduje podstawę n logarytmu liczby. Gdzie n jest argumentem liczbowym | |
ln () | Naturalny logarytm | |
sqt () | Pierwiastek kwadratowy | |
____ | Pierwiastek sześcienny | |
____ | Pierwiastek stopnia n-tego | |
| | | Wartość bezwzględna | |
sin() | Funkcja sinus | |
cos() | Funkcja cosinus | |
tang() | Funkcja tangens | |
sec() | Funkcja sieczna | |
csc() | Funkcja cosecans | |
cot() | Funkcja cotangens | |
asn(), acs(), atn(), asc(), acs(), act() | Odwrotność funkcji trygonometrycznych | |
snh (x), csh (x), tnh (x), ash (x), ach (x), ath (x) | Funkcje hiperboliczne i odwrotne hiperboliczne | |
____ | Pobiera rzeczywistą część liczby zespolonej | |
____ | Pobiera część urojoną liczby zespolonej | |
____ | Przycisk do wyboru między kształtami biegunowymi i prostokątnymi do zapisywania liczb zespolonych. Prostokątny (a + bi) i Polarny (A∠B) | |
____ | Podaj kąt liczby zespolonej w postaci biegunowej | |
____ | Ten przycisk pozwala wybrać jednostkę miary dla kątów. Deg (stopnie), Rad (radiany) i Grad (gradiany). | |
____ | Te przyciski umożliwiają przeglądanie ostatnich 20 wykonanych operacji. | |
____ | Pozwalają przesuwać kursor w celu zmiany wprowadzonego wyrażenia matematycznego. | |
____ | Pozwala wybrać jedną z 6 lokalizacji pamięci. M1, M2, M3, M4, M5 i M6 | |
____ | Zapisz lub odczytaj dane w wybranej lokalizacji pamięci | |
____ | Usuń wstawiony element | |
Usuń poprzedni znak | ||
i, e, pi | i (część urojona liczby zespolonej); e (stała d'Eulera); π (stała pi) |
Kalkulatory naukowe to bogate w funkcje narzędzia, które pomagają rozwiązywać problemy naukowe, inżynierskie i matematyczne.
Dziś jest to potężne narzędzie, które pozwala użytkownikom rozwiązywać problemy trygonometrii za pomocą odwrotnych funkcji trygonometrycznych. Ponadto użytkownicy mogą pracować ze stopniami, radianami i stopniami, po prostu przełączając tryby, a stałe matematyczne, takie jak Pi i stała Eulera, są wprowadzane do tych kalkulatorów w celu precyzyjnych obliczeń.
Pozwalają również pracować z wykładnikami, rejestrami i notacjami naukowymi, co czyni je idealnym narzędziem do rozwiązywania problemów inżynierskich.
Kalkulatory naukowe online to doskonała opcja do rozwiązywania złożonych obliczeń w dowolnym momencie. Ponieważ jesteś online, masz do niego dostęp, gdzie i kiedy tego potrzebujesz.
Łatwość dostępu: z dowolnego urządzenia z połączeniem Wi-Fi możesz z niego korzystać. Na komputerze stacjonarnym, laptopie, telefonie komórkowym, tablecie itp. W tym konkretnym mamy kompletny przewodnik po każdej funkcji, dzięki czemu możesz z niego korzystać w tej chwili ze wszystkimi instrukcjami.
Łatwy w użyciu: Kalkulatory naukowe online mają przyjazny i intuicyjny interfejs użytkownika. Jest bardzo podobny do fizycznego kalkulatora, dzięki czemu jest bardzo łatwy w użyciu.
Wysoka moc obliczeniowa: ten kalkulator umożliwia rozwiązywanie różnorodnych obliczeń z dużą precyzją.
Zrobione z ❤